Arbuscular mycorrhiza enhances nutrient uptake in chickpea
نویسندگان
چکیده
منابع مشابه
Control of arbuscular mycorrhiza development by nutrient signals
Inorganic phosphate (Pi), the main form of phosphorus used by plants, is one of the most important limiting factors for plant growth. In the soil soluble Pi that is readily available for uptake, occurs at very low concentrations (Schachtman et al., 1998). One adaptation of plants to low Pi availability is the symbiosis with arbuscular mycorrhiza fungi (AMF) of the phylum Glomeromycota. The fung...
متن کاملEffect of Mycorrhiza on the Nutrient Uptake of Sugarcane
Vesicular arbuscular mycorrhizae (VAM) fungi commonly infect plant roots, forming beneficial symbiotic relationships. The primary benefits of VAM plants are the enhanced acquisition and recycling of nutrients, particularly P, as well as soil moisture. This study compared the relationship between soil and leaf chemical elements of sugarcane variety N12 with low and high % mycorrhization (%myc). ...
متن کاملModelling Ammonium Transporters in Arbuscular Mycorrhiza Symbiosis
The Stochastic Calculus of Wrapped Compartments (SCWC) is a recently proposed variant of the Stochastic Calculus of Looping Sequences (SCLS), a language for the representation and simulation of biological systems. In this work we apply SCWC to model a newly discovered ammonium transporter. This transporter is believed to play a fundamental role for plant mineral acquisition, which takes place i...
متن کاملEffects of Arbuscular Mycorrhizal Fungi on Growth and Nutrient Uptake of Apple Rootstocks in Calcareous Soil
The effects of three Arbuscular Mycorrhizal Fungi (AMF) species (Glomus versiforme, Claroideoglomus etunicatum and Rhizophagus intraradices) were studied on the growth parameters and nutrient uptake of three apple rootstocks (M.9, M.7 and MM.106). The soil medium contained a high level of calcium carbonate (38.65%). The results showed that AMF inoculation could increase almost all growth parame...
متن کاملSelenium enhances nutrient uptake and rosmarinic acid biosynthesis in Melissa officinalis L. under salinity stress
Salt stress is a serious problem facing plant growth and development. Selenium (Se) could improve plant growth and reduced stress. Hence, the aim of this study was to determine whether the Se application could alleviate salinity stress negative effects on Melissa officinalis L. Different salinity levels in this research were control (0), 50, 100 and 200 mM. Simultaneously, sodium selenate (Se) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Plant, Soil and Environment
سال: 2011
ISSN: 1214-1178,1805-9368
DOI: 10.17221/133/2011-pse